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Abstract— In this work, a procedure for the video compres-
sion and transmission is presented, based on a Singular Value
Decomposition approach, whose controls are obtained as the
output of a constrained optimization problem that refers to
the compression ratio as the optimization functional and an
image quality index as the performance constraint. The tools of
estimation theory allow to obtain a polynomial approximation
of these indexes in a static fashion via least square technique,
and adaptively, with the concurrent estimation of both the order
of the polynomial functions and the salient function parameters
through the use of Kalman Filters. The implementation of the
whole system and some simulations of real video sequences are
presented to validate and assess the proposed procedure.

I. INTRODUCTION

The problem of video coding and compression is well
known and widely studied in the image processing and
communication community, and in the technical literature
many standards are proposed to approach and solve the issue,
that mainly regard computational aspects and in some cases
software/hardware integrated architectures.

Conversely, this work has a methodological purpose in
the tradition of system theory disciplines, and the main
objective is the presentation of a theoretical framework where
the typical issues raised by the quest for the “optimal”
compression algorithm are approached.

In particular, the proposed method to perform video data
compression for transmission is based on the Singular Value
Decomposition (SVD) [1][2] of video sequences, and the
solution of an optimization problem, where the control
variables are the parameters of the SVD, and the optimization
is carried out with respect to figures of merit such as the
Compression Ratio and the image quality, expressed with
different metric functions. Some specific aspects such as the
approximation of these performance indexes and the online
estimation of the relevant parameters are studied, and the
implementation of the whole system is developed.

More in detail, the paper is organized as follows: In
Sec. II the notation is introduced and the formalization of the
problem with respect to the SVD coding/decoding procedure
is sketched. In the main Sec. III, the compression algorithm is
described, and a least square static and a Kalman Filter based
dynamic approaches are presented. Sec. IV summarizes
the structure of the procedure and Sec. V presents some
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simulation results on real sequences, taking into account the
performance indexes Compression Ratio and reconstruction
quality, but also giving some insights into the computational
cost of the algorithm. Some conclusions and future work
perspective are finally given in Sec. VI.

II. SVD COMPRESSION

As a first point, a preliminary summary of the adopted
notation is in order. Be the frame sequence of in-
terest represented as a temporal series of N frames,
{It(x, y, n), n = 1, . . . , N} with t ∈ Z; each frame
It(x, y, n) has size Lx × Ly pixels and is subdivided
into a grid of M blocks bi,t(x, y, n), i = 1, . . . ,M
of size L × L pixels, that form M -block families
{bi,t(x, y, n), n = 1, . . . , N} , i = 1, . . . ,M .

The rationale behind the proposed algorithm to compress
and transmit video sequences resides in a two step procedure,
respectively performing the Singular Value Decomposition
for each block (frame) and transmitting the principal compo-
nents together with the related coefficients, instead of trans-
mitting straightforwardly all the frame pixels (see also [3]).
The steps for coding and decoding, that are schematically
shown in Fig. 1, are described in next subsections.
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Fig. 1. Coding/Decoding procedure for SVD compression.

A. Coding
Starting from the sequence {bi,t(x, y, n), n = 1, . . . , N},

each block bi,t(x, y, n) is reshaped as a vector bi(n) ∈ RL2

of pixel intensities so as to construct the matrix

Oi =
[
bi(1) bi(2) · · · bi(N)

]
∈ RL

2×N ,

that is then decomposed according to the SVD procedure,
Oi = UiΣiV >i [4]: In the orthogonal matrix

Ui =
[
u1 · · · uri

uri+1 · · · uL2

]
∈ RL

2×L2

the first ri columns, corresponding to the non-null singular
values {σ1, . . . , σri

} in Σi, represent the principal compo-
nents of Oi (rank Oi = ri). An effective data compression
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is obtained by truncating the Ui matrix to the first r∗i ≤ ri
columns: The resulting vector space

Ur∗i = span{u1, . . . ,ur∗i }

retains an amount of energy data of

E(r∗i ) =
∑r∗i
k=1 σ

2
k∑ri

k=1 σ
2
k

. (1)

The projection of the vectors bi(n), n = 1, . . . , N over
the vector space Ur∗i gives raise to the definition of the
coefficients

αi(n) =
(
U>r∗i Ur

∗
i

)−1

Ur∗i bi(n) ∈ Rr
∗
i , (2)

where
Ur∗i =

[
u1 · · · ur∗i

]
(3)

are the principal components of interest.

B. Decoding

Principal components (3) and coefficients (2) are transmit-
ted, and during the decoding phase they are recombined to
reconstruct each frame block; the reconstruction of the i-th
block of the n-th frame is given by a linear combination of
eigen-images

b̂i(n) = Ur∗iαi(n).

Finally, by grouping together all block estimates, the frames
and the sequence Ît(x, y, n) is obtained.

In literature, several metrics are studied to evaluate and
assess the accuracy and the goodness of the reconstruction,
and those based on pixel-to-pixel comparison are among the
most popular, such as the Mean Squared Error (MSE):

MSEt ,
1
N

N∑
n=1

 1
LxLy

Lx∑
x=1

Ly∑
y=1

∆It(x, y, n)2

 , (4)

being ∆It(u, v, n) = It(u, v, n) − Ît(u, v, n) the difference
between the original and the reconstructed images respec-
tively. In the following, the peak to noise ratio will be used,
whose relation with the MSE is as follows:

PSNRt , 20 log
(

255√
MSEt

)
. (5)

This aspect will then be considered in Sec. III-E.

III. ADAPTIVE COMPRESSION ALGORITHM

Firstly, the Compression Ratio (CR) is introduced, being
the ratio between the compressed data volume (byte) and the
original data volume (byte):

CR =
∑M
i=1

(
4L2r∗i + 4Nr∗i

)
NLxLy

. (6)

Here and in the following, no quantization is adopted; images
are composed of 8-bit pixels, and all other data are 32-bit
floating point numbers.

The proposed algorithm acts so as to minimize at each
time step the cost of the data transmission CR, while

keeping the image quality over a desired threshold; this latter
parameter is estimated by now through the PSNR (5).

To this aim, the optimal solution of the following con-
strained problem is sought:

ξopt = arg min
ξ=(ξ1,ξ2)∈Ξ

CR(ξ), (7)

where the control quantities are given by ξ1 = E, transmitted
energy percentage (1) (thus related to the parameter r∗i ), and
ξ2 = L, block size; the constraint is given by the following
expression

Ξ ,

(ξ1, ξ2) ∈ R+ × N

∣∣∣∣∣∣
 0 ≤ ξ1 ≤ 1

1 ≤ ξ2 ≤ min{Lx, Ly}
PSNR ≥ τPSNR

 ,

where τPSNR is the minimum quality threshold that can be
accepted. In this context, the constrained optimization prob-
lem is solved numerically through the MATLABTM fmincon
routine.

To complete the definition of the problem (7) both the cost
function and the constraint should be expressed in terms of
ξ = (ξ1, ξ2): In this respect, two polynomial approximation
models for the CR and PSNR functions are derived using
the Minimum Squares approach, and the following quadratic
expressions are assumed in the first instance on an empirical
base

ĈR(ξ) = a0 + a1ξ1 + a2ξ2 + a3ξ1ξ2 + a4ξ
2
1 + a5ξ

2
2 (8)

ˆPSNR(ξ) = b0 + b1ξ1 + b2ξ2 + b3ξ1ξ2 + b4ξ
2
1 + b5ξ

2
2 . (9)

The model parameter identification is now performed either
statically or dynamically.

A. Static Approach

In the static approach, a first step involves the simulation
of the compression for a certain number of values ξ(k) =(
ξ

(k)
1 , ξ

(k)
2

)
, k = 1, . . . ,K and the computation of the CR

and PSNR correspondent values. These measurements are
then exploited for the estimation of the (aj , bj) parameters.

A comment on notation is now in order. Here and in
the remainder of the paper the subscripts (CR or PSNR)
referred to all quantities are omitted when possible to fa-
vor the clarity of the procedure and avoid weighing down
the reading: Measurements yCR and yPSNR are indicated
simply with y, parameters θCR and θPSNR with θ, and so
on.

The measurements y (both for CR and PSNR) are
supposed to be produced by the following model:

y(t) = SKθ(t) + e(t), (10)

where the output measurement vector is either

y = yCR =
[
CR(ξ(1)) · · · CR(ξ(K))

]>
or

y = yPSNR =
[
PSNR(ξ(1)) · · · PSNR(ξ(K))

]>
,
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for the two quantities, respectively; the parameter vector θ
particularizes into

θCR =
[
a0 a1 a2 a3 a4 a5

]>
(11)

θPSNR =
[
b0 b1 b2 b3 b4 b5

]>
, (12)

and e (eCR and ePSNR) is a zero-mean random error vector;
finally the state matrix SK ∈ RK×6 is given by

SK =


1 ξ

(1)
1 ξ

(1)
2 ξ

(1)
1 ξ

(1)
2

(
ξ

(1)
1

)2 (
ξ

(1)
2

)2

...
...

...
...

...
...

1 ξ
(K)
1 ξ

(K)
2 ξ

(K)
1 ξ

(K)
2

(
ξ

(K)
1

)2 (
ξ

(K)
2

)2

 .
(13)

The minimum square estimate θ̂ (θ̂CR and θ̂PSNR) is
obtained resorting to

θ̂(t) =
(
S>KSK

)−1
S>Ky(t).

In this approach, although K ≥ 6 is sufficient to produce
a solution, practically a very large number (K � 6) of
simulations is needed because the function profiles has to
adapt on a vast region in the Ξ domain and avoid overfitting.

B. Dynamic Adaptive Approach

In this second approach, the parameters of the profile
functions are not computed from scratch at each time-step
t, but are recursively obtained through a Kalman Filter
procedure [5][6], as shown in the schematic drawing of
Fig. 2. Since the dynamics of parameter change is not known
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Fig. 2. Diagram of the proposed algorithm. QY indicates a generalized
quality index (PSNR or those presented in III-E).

a-priori, a random walk model is adopted for θ (θCR and
θPSNR), the state equation being

θ(t+ 1) = Aθ(t) + v(t) (14)

where A = I6, v(t) (vCR(t) and vPSNR(t)) is a zero-mean
white noise with covariance matrix Q (QCR and QPSNR);
these latter values are subject to a tuning procedure (Sec. III-
D), because they are strictly related to the rate of change of
θ (the faster the change of θ, the bigger the value of Q).
The output equation for y(t) (yFC(t), yPSNR(t)) is

y(t) = Ctθ(t) +w(t), (15)

where Ct is taken as SK in (13) with K = 6, Ct ∈ R6×6, and
w is a zero-mean noise of variance R. The output matrix Ct

is time-variant, obtained by taking at each timestep a random
set of (ξ(k)

1 , ξ
(k)
2 ) in order to keep the estimation procedure

valid for the whole Ξ domain.
The Minimum Variance Estimator of the parameter θ for

the so defined linear time-variant model, given the measure-
ments {y(s); 0 ≤ s ≤ t}, is obtained as [7][8]:

1) Initial Conditions

θ̂(0|0) = E [θ(0)]
P (0|0) = Var [θ(0)]

2) Prediction

θ̂(t|t− 1) = θ̂(t− 1|t− 1)
Pt|t−1 = Pt−1|t−1 +Q

3) Correction

θ̂(t|t) = θ̂(t|t− 1) + Lt

[
y(t)− Ctθ̂(t|t− 1)

]
Pt|t = Pt|t−1 − Pt|t−1C

>
t Λ−1

t CtPt|t−1

where Pt|t−1 and Pt|t are the a-priori and a-posteriori error
variances,

Pt|t−1 = Var
[
θ̂(t|t− 1)− θ(t)

]
Pt|t = Var

[
θ̂(t|t)− θ(t)

]
,

Λt refers to the variance of the innovation process e(t) =
y(t)− Ctθ̂(t|t− 1),

Λt = CtPt|t−1C
>
t +R

and the filter gain Lt is defined as

Lt = Pt|t−1C
>
t Λ−1

t .

From the asymptotic analysis of the Kalman Filter for
time-invariant models (Ct = C) [6], condition for the
convergence of Pt|t−1, t → +∞, to the definite-positive
stabilizing solution P̄ of the Discrete time Algebraic Riccati
Equation (DARE)

P = A
[
P − PC>

(
CPC> +R

)−1
CP
]
A> +Q (16)

is the detectability of (A,C) and the reachability of (A,Q).
This analysis is extended to the case of time-variant system
and the mentioned condition is ensured by carefully selecting
the tuning matrices: In particular, by choosing a definite-
positive Q, the reachability matrix

R =
[
Q AQ · · · A5Q

]
=
[
Q Q · · · Q

]
is full rank; similarly, having C (Ct) invertible yields a full
rank observability matrix:

O =


C
CA

...
CA5

 =


C
C
...
C

 .
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C. Polynomial Approximation of CR and PSNR

To improve the performance of the system, the assumption
made on the order of the polynomial approximation (11)-(12)
is now discussed, and the cardinality of the parameter sets
will be indicated with p.

To find an optimal value for p (hence the order of the
polynomial approximation) an identification procedure is
carried out on a given measurement set y

y =
[
y1

y2

]
∈ RK ,

where the first K/2 data y1 are used for the model identifi-
cation (θp ∈ Rp), and the remaining K/2 measurements y2

are employed to assess the accuracy of the computed model;
also, it is assumed that y1 and y2 are equal mean, and the
total covariance of y is σ2IK . Therefore, the prediction error
on future data given by

ε = y2 − SK θ̂p (y1)

shows [7][8]

var[ε] = Kσ2
(

1 +
p

K

)
,

linearly dependent on p; σ2 is not a-priori known, but
can be computed using the Minimum Variance Unbiased
Estimator [7][8]

K

K − p
σ̂2
p =

1
K − p

||y1 − SK θ̂p (y1) ||2.

The optimal order can be then computed by minimization of
the Final Prediction Error (FPE)

FPE(p) , σ̂2
p

1 + p/K

1− p/K
(17)

constraining p in [pmin, pmax]. It follows:

popt = arg min
p

FPE(p).

Operatively, a set of models with increasing p, p ∈
[pmin, pmax], is identified by computing σ̂2

p at each time t
and constructing the FPE function (17), leading to pCR(t) e
pPSNR(t). The choice of a single order p for both CR and
PSNR is performed by choosing the most frequent value
in this family.

D. Kalman Filter Tuning

In the model (14) the noise variance Q can be computed,
in the hypothesis of i.i.d. noise, through the ergodic theorem

lim
T→∞

1
T

T∑
t=1

[θ(t+ 1)− θ(t)] [θ(t+ 1)− θ(t)]> = Q.

In practice, both in the static and in the dynamic parameter
estimation, θ(t) is not known, and only the estimate θ̂(t)
can be inferred; therefore the noise variance is at timestep T
approximated by

Q̂T =
1
T

T∑
t=1

[
θ̂(t)− θ̂(t− 1)

] [
θ̂(t)− θ̂(t− 1)

]>

and, recursively, by

Q̂T+1 =
TQ̂T +

[
θ̂(T + 1)− θ̂(T )

] [
θ̂(T + 1)− θ̂(T )

]>
T + 1

.

In this respect, some learning sequences are exploited
through the static estimation procedure to derive a fixed
variance value for the Kalman Filter. The output equation
in this case is

y(t) = SKθ(t) + e(t),

where e(t) is a gaussian random vector, e(t) ∈
N
(
0, R(t) = σ2(t)IK

)
. Being p the dimension of θ(t),

σ̂2(t) =
1

K − p
||y(t)− SK θ̂(t)||2. (18)

By using these learning variances in the output equations
given by (15), it follows:

R =

[
1
T

T∑
t=1

σ̂2(t)

]
IK ,

for both CR and PSNR.

E. Choice of the Quality Index

The choice of the quality index is of paramount importance
for the derivation of the optimal values for the control
variables, in order to provide a good visual quality at a
possibly minimum cost. So far the quality index that has
been considered (widely exploited in the literature) is simply
the signal to noise ratio PSNR (5). It is reasonable, though,
to explore different possibilities; in particular, in this work,
the idea of taking into account the human vision system
suggests metrics where only the energy in the bandwidth
of the Human Vision System (HVS) is considered [9][10].

In the hypothesis standing for the vision system of be-
ing linear and isotropic for low contrasted monochromatic
images in absence of fast dynamics, a simple function
characterizes the system. The human sensitivity threshold
function has been studied [11][12], and by taking the inverse
of such a function the spatial frequency response H(r) is
approximated. A symmetric HVS model is given by

H(r) = (0.2 + 0.45r)e−0.18r (19)

where the radial frequency is r =
√
u2 + v2, being u and

v spacial frequencies. The principal spectral contribution
for the images to be analyzed appears at low frequencies
and the H(r) filter reduces the static component (r = 0)
and highlights its neighbor contributions: This is related
to how the human system is sensitive to low contrast dif-
ferences [13]. The PSNR function has been modified in
order to accommodate the HVS sensitivity by computing
the energy of the error between reconstructed and original
images, thus obtaining the “Peak Signal to HVS Noise
Ratio”:

PSHV SNRt , 20 log
(

255√
HV SMSEt

)
, (20)
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where the MSE weighted by the HVS function is

HV SMSEt ,
1
N

N∑
n=1

 Lx∑
u=1

Ly∑
v=1

H(u, v)2∆Ft(u, v, n)2

 ,
(21)

∆Ft(u, v, n) =
∣∣∣Ft(u, v, n)− F̂t(u, v, n)

∣∣∣ being the dif-
ference between the Fourier transforms of It(u, v, n) e
Ît(u, v, n) respectively.

Further modified versions of (20) and (21) yield for
example the “Normalized HSV MSE” [10]

HV SNMSEt ,
1
N

N∑
n=1

∑Lx

u=1

∑Ly

v=1H(u, v)2∆Ft(u, v, n)2∑Lx

u=1

∑Ly

v=1H(u, v)2 |Ft(u, v, n)|2
,

(22)
or the logHV SNMSE

logHV SNMSEt , −10 logHV SNMSEt (23)

where small index variations are enhanced.

IV. IMPLEMENTATION OF THE FULL PROCEDURE

In this section the procedure for the adaptive compression
of the video sequence is summarized, with reference to
the schematic drawings of Figs. 1-2. The system receives
sequences It, t ∈ Z+, of N frames, that are compressed
adaptively to obtain Ît. The following phases are highlighted:

1) the SVD compression is simulated for K pairs ξ(k) =(
ξ

(k)
1 , ξ

(k)
2

)
, k = 1 . . . ,K and the order p is obtained

through the optimal procedure described before;
2) performance vectors yQY ∈ RK and yCR ∈ RK , are

composed, whose components are the quality index
and compression ratio values for each pair ξ(k); the
cardinality of these two sets in the static case is much
bigger than in the dynamic case (K � p);

3) the parameters of the polynomial approximation,
θQY ∈ Rp e θCR ∈ Rp, are estimated exploiting
measurements yQY e yCR through either the minimum
square approach or the Kalman Filter; in this latter
case, the filters adapt their estimates according to the
rate of variability of the parameters;

4) the constrained optimization problem (7) is solved
numerically given a minimum threshold τQY for the
reconstruction quality;

5) the optimal quantities Ê = ξ1,opt and L̂ = ξ2,opt are
used as control variables for the SVD compression of
input sequence It to obtain Ît.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

The algorithms have been tested over several sequences.
Here are reported results from 26 sequences of N = 50
frames (Lx × Ly = 576× 720 pixel). The simulations have
been performed on a notebook equipped with CPU Intel Core
Duo T2300 at 1.6 GHz, 2 GB RAM at 666 MHz, running
Windows XP Professional Ed.; the development environment
is MATLABTM 7.5.0 (version R2007b).

The order of the polynomial approximation model has
been identified through the procedure of Section III-C,

choosing among a set of complete polynomial expressions
f(ξ1, ξ2), ranging from p = 3, f(ξ1, ξ2) = a0 +a1ξ1 +a2ξ2,
to p = 11, f(ξ1, ξ2) = a0 + a1ξ1 + a2ξ2 + a3ξ1ξ2 +
a4ξ

2
1 +a5ξ

2
2 +a6ξ

2
1ξ2 +a7ξ1ξ

2
2 +a8ξ

2
1ξ

2
2 +a9ξ

3
1 +a10ξ

3
2 . An

example of FPE curves (17) for PSNR and CR is given in
Fig. 3, where the two orders related to p = 6 and p = 10
are highlighted. The former corresponds to the empirical
quadratic approximation (11)-(12), while the latter represent
the actual optimal value popt that emerges consistently in the
analysis of all sequences (t = 1, . . . , 26) for both PSNR and
CR and gives rise to the following polynomial expression:

f(ξ1, ξ2) = a0 + a1ξ1 + a2ξ2 + a3ξ1ξ2 + a4ξ
2
1 + a5ξ

2
2

+ a6ξ
2
1ξ2 + a7ξ1ξ

2
2 + a8ξ

2
1ξ

2
2 + a9ξ

3
1 .
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Fig. 3. FPE function example for PSNR and CR profiles, as a function
of the order p. The quadratic order (p = 6) and the optimal order (p = 10)
are shown with diamond and circle respectively.

The implementation of the compression procedure is per-
formed, and at each time step t the optimal control values Ê
and L̂ are computed. The expressions (5)-(6) for the inter-
esting quantities are given in Figs. 4-5, referring respectively
to the low-order quadratic polynomial approximation and the
high-order optimal one.
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Fig. 4. PSNR and CR behavior. Quadratic polynomial approximation
(p = 6 parameters): Static estimation (black) vs dynamic estimation (gray)
of the parameters; the quality threshold τPSNR is shown as a dotted line.

The static and the dynamic procedures performs similarly,
though for high-order approximations the static procedure
is more demanding in terms of computational effort, since it
requires the inversion of the K×p SK matrix (K � p), while
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Fig. 5. PSNR and CR behavior. Quadratic polynomial approximation
(p = 10 parameters): Static estimation (black) vs dynamic estimation (gray)
of the parameters; the quality threshold τPSNR is shown as a dotted line.

in the Kalman filter approach the state matrix is square, p×p.
Moreover, exploiting the high-order optimal approximation
allows reaching better results in meeting the requirements on
PSNR also with a slightly better attained compression.

On the whole, the preliminary experiments show that both
the static and the dynamic procedure are effective in produc-
ing a good quality (PSNR ≈ τPSNR) compressed video
sequence (CR < 1), although more extensive validation is
needed to gain some insight into the performance sensitivity
with respect to the video sequence (dynamics time-scale,
periodicity, ...) and to understand whether it is possible to
state a trade-off between the static and the dynamic solutions.

To complete the study, it is worth giving some details
of the performance with respect to the different quality
indexes (5), (20), and (23). In general, it can be observed
that the computation of Ît using the PSNR metrics is on
average faster but the requirement in bytes is higher (higher
CR), for a chosen threshold τQY ; on the other side, the
CR performance is basically equivalent if measured with
PSHV SNR or logHV SNMSE. As far as the complexity
is concerned, the algorithm execution time is mainly devoted
to the SVD compression procedure, and only a small frac-
tion is employed for the calculation of the quality index.
Moreover, the SVD compression time is insensitive to the
energy E values, while decreases quadratically as the block
dimension L grows. Tab. I shows that the quality index
computation time is constant with respect to any choice of
control pair (E,L) (time is measured for a chosen sequence
It), and the computation of the Fourier transform makes
the calculation of PSHV SNR (one FFT computation) and
logHV SNMSE (two FFT computations) more demanding
if compared to PSNR, and basically takes all the algorithm
execution time.

VI. CONCLUSIONS

In this work, an approach to video compression and
transmission has been explored, based on the SVD decom-
position according to the computation of the optimal choice
for the SVD control quantities. To this aim a constrained
optimization problem is defined and numerically solved.

index mean [s] var [s2]
PSNR 0.4189 4.2187 · 10−4

PSHVSNR 4.0035 0.0011
logHVSNMSE 7.8812 4.8718 · 10−4

TABLE I
EXECUTION TIME W.R.T DIFFERENT QY INDEXES.

The performance indexes that are considered in this frame-
work are the compression ratio CR and the image quality
index QY . In particular, the estimation of both the order
and the parameters of the polynomial approximation of these
figures of merit have been studied and implemented in the
algorithm: The former is obtained through the minimization
of the final prediction error, while the latter are estimated
either statically via Least Squares or dynamically by using
a pair of Kalman Filters running in parallel.

There are still many aspects that it is worth studying with
future research: Firstly, some insight into the optimization
problem itself is needed, beyond the numerical solution.
Moreover, the following dual problem should be addressed:

ξopt = arg max
CR≤τCR

QY(ξ).

Also different approximation techniques for the performance
indexes and other techniques for the recursive estimation of
the relevant parameters can be employed. Finally, a more
complete comparative examination of the video quality index
would be of interest.
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